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Introduction

The Restarted Generalized Minimal Residual Method (GMRES(m)) is one of the
most successful methods for solving linear systems of equations Ax = b, where A
is a nonsymmetric sparse matrix[6]. At each cycle, GMRES(m) uses the residual at
the previous cycle as starting guess, and constructs a Krylov subspace of dimension
m with m� n (where n is the dimension of the linear system) for computing a new
residual, which is used as the starting residual for the next cycle, i.e., the next call
to a GMRES routine. Rate of GMRES(m) convergence depends on an appropriate
selection of the restarting parameter m. In this context several algorithms have been
proposed for choosing statically and dynamically the parameter m or introducing
vectors for enriching the subspace [2, 3].

Models comparison

In this work we compare the performance of the proposed method called Adaptive-
GMRES with the standard GMRES(m) and other methods that try to acelerate the
convergence. These methods are:

I GMRES-E(m, d) method proposed by R. B. Morgan [5], improves the
convergence by appending d approximate eigenvectors to the Krylov
subspace.

I LGMRES(m, l) method proposed by A. H. Baker [1], improves the
convergence by appending l error approximation vectors.

Control formulation

At each cycle, GMRES(m) finds a solution of the form

xj = xj−1 + Vmyj , (1)

where xj−1 is the previous approximate solution of x , and the residual is rj−1 =
b − Axj−1; then Vm is a n × m matrix where its columns form an orthogonal
basis of the Krylov Subspace Km(A, rj−1) ≡ span{rj−1,Arj−1,A

2rj−1, ...,A
m−1rj−1}.

Furthermore, yj minimize the l2-norm of the residual ‖rj‖2 = ‖b−A(xj−1+Vmyj)‖2 =
‖βe1 − H̃myj‖2.
When the l2-norm of the last yj is very small, then xj ≈ xj−1 and stagnation occurs.
Hence, the proposed strategy called Adaptive-GMRES(m) consists in modifying the
value of m before each restarted cycle.
An example of a proportional controller for m is given by:

mj = mj−1 + uj , (2)

where

uj =

 1 if ‖yj‖2 < ε0

0 if ‖yj‖2 ≥ ε0

(3)

Selected problems

Partial tests on classic problems from the SuiteSparse matrix collection [4] are per-
formed. For the Group A, GMRES(m) converges before 2000 restart cycles, and for
Group B, GMRES(m) does not converge before 2000 restart cycles. n is the size
of A, nnz is the number of nonzero elements in A and cond(A) is the condition
number of A.

Problem Group A n nnz Application area cond(A)
A1 add20 2395 17319 circuit simulation problem 12047,1
A2 cavity05 1182 32632 computational fluid dynamics problem 577065
A3 circuit 2 4510 21199 circuit simulation problem 131925
A4 fpga trans 01 1220 7382 circuit simulation problem 12214,3
A5 memplus 17758 99147 circuit simulation problem 129436
A6 sherman4 3312 20793 computational fluid dynamics problem 2178.63

Problem Group B n nnz Application area cond(A)
B1 sherman3 5005 20033 computational fluid dynamics problem 5,01425e+17
B2 sherman5 3312 20793 computational fluid dynamics problem 1,87941e+05
B3 TSOPF RS b162 c1 5374 205399 power network problem 8,59445e+07
B4 young3c 841 3988 acoustics problem 9298,3

Algorithm settings

For comparison purposes Ax = b was solved using: GMRES(m), GMRES-E(m, d),
LGMRES(m, l) and the Adaptive-GMRES(m). Algorithms settings: initial solution

is x0 = 0, stopping criterion is
‖rj‖2
‖r0‖2 < 10−6 or a maximum of 2000 restart cycles.

GMRES(m): m = 30. LGMRES(m, l): m = 27, l = 3. GMRES-E(m, d): m = 27,
d = 3. Adaptive-GMRES(m) has initial restart parameter m0 = 30 and ε0 = 10−10.
The reported times are the average of 5 runs.

Numerical results
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Figure 1: Examples of solved problems. (Left column:) Problem Group A, GMRES(m) converges before 2000 restart cycles.
(Right column:) Problem Group B, GMRES(m) does not converge before 2000 restart cycles.

Figure 2: (Left:) Execution time ratio of the selected algorithms -relative to GMRES(m)- for Problem Group A. (Right:)
Execution time ratio of the selected algorithms for Problem Group B.

Conclusion

The Adaptive-GMRES(m) method has good convergence properties for both groups of problems. We show
that increasing the value of m when we have stalling improves the information in the restarted GMRES. The
criterion of increasing the value of m when the value of ‖yj‖2 is small, allows to avoid slow convergences and
stagnations in standard GMRES(m). Future work may find better heuristics for uj in order to reduce execution
times.
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